本书按历史发展从解一元一次方程讲起,详述了一元二次方程、一元三次方程,以及一元四次方程的各种解案,从而自然地引出了群、域,以及域的扩张等概念。
本书分为六个部分,共计十六章,如“多项式方程的求解和数系的扩张”、“二次、三次、四次方程的求解”、“算术基本定理”、“欧几里得算法”、“数域的概念”、“代数添加和扩域”、“可约和不可约多项式”、“多项式的整除理论”、“多项方程式的根式求解”等。
本书分为四个部分,共计十四章,如“从自然数系到有理数系”、“无理数与实数系”、“代数、基本定理的定性说明”、“业余数学家阿尔冈的证明”、“美国数学家安凯奈的证明”、“圆周率及其无理性”、“自然对数的底数e及其元理性”、“有关多项式的一些理论”、“代数扩域、有限扩域与代数元域”等。
本书共分六个部分,十四个章节,主要内容包括从求解多项式方程到代数基本定理;代数基本定理的证明;有关多项式与扩域的一些理论;代数扩域、有限扩域以及尺规作图;л以及e是超越数。
本书试图在高中数学的基础上,把初等数论、高等代数中的一些重要概念与理论串在一起详加论述。从“多项式方程的求解与数系的扩张”、“整数的一些基本概念、定理与理论”、“数域、扩域与代数扩域的一些基本理论”、“多项式的一些基本概念、定理与理论”、“阿贝尔引理、阿贝尔不可约定理以及一些重要的扩域”、“多项式方程的根式求解、克罗内克定理与鲁菲尼-阿贝尔定理”等六方面逐步展开。
本书按历史发展从解一元一次方程讲起,详述了一元二次方程、一元三次方程,以及一元四次方程的各种解案,从而自然地引出了群、域,以及域的扩张等概念。